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Section I   Introduction
EPA has recently established a policy and a series of guiding principles for the use of various probabilistic risk
assessment techniques.  The policy states that probabilistic risk analysis techniques (including Monte-Carlo analyses)
can be viable statistical tools for analyzing variability and uncertainty in risk assessments provided that adequate
supporting data are available and credible assumptions are made.  The policy goes on to state that when risk
assessments using probabilistic techniques are submitted to the Agency for review and evaluation, a number of
conditions must be satisfied: these conditions relate to the good scientific practices of transparency, reproducibility,
and the use of sound methods (memo from F. Hansen, 5/15/97).  One of these specific conditions of acceptance states
that 

The methods used for the analysis (including all models used, all data upon which the assessment is
based, and all assumptions that have a significant impact upon the results) are to be documented and
easily located in the report.  This documentation is to include a discussion of the degree to which the data
used are representative of the population under study.  Also, this documentation is to include the names
of the models and software used to generate the analysis.  Sufficient information is to be provided to allow
the results of the analysis to be independently reproduced.  

     
The Agency simultaneously released a series of sixteen “Guiding Principles” for the use of Monte-Carlo analysis and
an Appendix dealing with the  selection of appropriate input probability distributions for these analyses.  The intent of
the current  document is to further develop these  principles and guidelines for use by pesticide registrants and other
interested parties by defining what we in OPP’s  Health Effects Division (HED)  see as key criteria which a risk
assessments  using Monte-Carlo risk assessment techniques must adequately address.  Specifically, this chapter
explores the various plots,  tests,  techniques, and analyses  which could be used to define an adequate probability
distribution for  use as an input parameter for a Monte-Carlo assessment submitted to HED.      

Monte-Carlo Modeling Options
 
Once the raw input data on the exposure variable of interest is collected, a risk assessor has available a number of
techniques for representing the exposure variables in a Monte Carlo analysis. 

C an assessor  can use the data values themselves directly in the simulation in what is termed a “trace-
driven” simulation.  In this technique, values from the raw input data are repeatedly selected in a random
manner  and used to calculated  model outputs;   

C an assessor can use the data to define a non-parametric empirical distribution function (EDF) where the
data values themselves are used to specify a cumulative distribution and the entire range of values
(including intermediate points) is used as model inputs.   With this technique, any value between the
minimum and maximum observed values can be selected and model input is not limited to the specific
values present in the measured data. 

      C an assessor  can attempt to fit a theoretical or  parametric distribution to the data using standard
statistical techniques and input parameters to the model can be selected from this fitted distribution.  
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There are a number of  potential benefits for making distributional assumptions about exposure data (du Toit et al,
1986; Law and Kelton, 1991).  For example,   

1)  Distributional assumptions permit the data to be represented compactly. A data set containing a potentially
large amount of   information can be summarized as a probability distribution model described by only a few
parameters.   Empirical distributions require that each data point be represented and can result in a data set
that is cumbersome and difficult to use if the data set is large.    

2) Distributional assumptions (and the exploratory data analysis which precedes them) may lead to a clearer
understanding of the underlying physical mechanisms involved in generating the data and vice-versa.

3)  Distributional assumptions permit data to be generated which are outside the range of historically observed
data.  This can be useful since many measures of performance for simulated systems depend heavily on the
probability of an “extreme event” (i.e., one outside the range of the observed data) occurring.  Empirical
distributions, which rely solely on past data when used in the usual manner, can tend to underestimate the
probability of an extreme event.  

4) Distributional assumptions permit the data to be “smoothed out” which may more accurately reflect real-
world values.  Empirical distributions, on the other hand,  may contain certain artifactual irregularities,
particularly if only a small number of data values are available.    

On the other hand, some authors prefer EDFs (Bratley, Fox and Schrage, 1987) arguing that the smoothing which
necessarily takes place in the fitting process distorts real information.  In addition, when data are limited, accurate
estimation of the upper end (tail) is difficult. Unfortunately for the assessor, there is no consensus as to which method
is best.   Despite the above reasons supporting the use of a parametric distribution developed from distributional
assumptions,  the decision to seek an analytic form to represent the data is ultimately a choice which rests with the
assessor.  In general, the use of parametric (theoretical) distributions may be preferable to the use of empirical
distributions when the data are limited, the fit of the theoretical distribution to the data is good, and there is a
theoretical or mechanistic basis which supports the chosen parametric distribution.  The process of selecting
probability distributions and evaluating the goodness-of-fit is a process that requires judgement.   Ultimately, the
technique selected will be a matter of the quality and quantity of the data under evaluation and the assessor’s exercise
of intelligence, creativity, and honesty in assessing the variability and uncertainties inherent in the risk assessment
problem.  

Organization of Document

Section I of this document is this introduction to Monte-Carlo methods and a brief description of the advantages of
disadvantages of parametric methods  (i.e., methods which make assumptions about underlying distributions to
develop theoretical distributions) and non-parametric methods (which utilize the data directly in forming an empirical
distribution, thereby making no assumptions about underlying distributions).  

Section II of this document focuses on parametric methods for characterizing and quantifying stochastic variability. 
In this section, it is explicitly assumed that the risk assessor has previously made the judgement that the data in hand
are of acceptable quality and are acceptably representative of the exposure variable of interest.  The discussion in this
parallels the Guiding Principles section and Technical Appendix of the Agency’s policy for Monte Carlo Analysis,
expanding these elements to provide more technical detail.  The general outline in Section II follows that developed by
Law and Kelton (1991).  It is organized around three fundamental activities:  
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(I) selecting candidate theoretical distributions to determine which general families appear to be
appropriate to use on the basis of the shape, summary statistics, and simple distributional plots; 

(II) estimating the intrinsic parameters of the candidate distributions to define the specific
distribution; and 

(III) assessing the quality of the resulting fit by examining how closely they represent the true
underlying distributions for the data of interest and using various Goodness-of-Fit (GoF) tests.   

Assessors have a wide variety of commercially available distribution-fitting programs, spreadsheets,  and dedicated
statistical packages to assist them in deciding whether or not their data can be adequately represented by  a theoretical
distribution function.  It is expected that most assessors will make use of one or more of these programs in fitting
exposure data.  While these programs can save a tremendous amount of work, their use should never be reduced to a
simple mechanical exercise of importing the data, running the analysis and picking the “best fitting” distribution
returned by the program.  Furthermore, despite their obvious utility, many of the commercial fitting-packages are
limited for  fitting exposure data.  For example, most fitting packages currently available cannot fit singly or multiply
censored data, truncated distributions, or  distributional mixtures.  For these data, the assessor will have to seek more
selective, powerful tools.  

Many  times in Monte Carlo analyses, an empirical distribution function (EDF) is used to characterize a model
variable if  the risk assessor has determined that the data themselves provides the best representation of the exposure
variable. In Section III,  we define an EDF and discuss the conditions under which the use of an EDF  may be
preferable to a CDF. The choice of whether or not to use an EDF in an assessment employing Monte-Carlo methods is
ultimately up to the risk assessor and his/her level of comfort and confidence with the data and the method.  Several
approaches used to implement EDFs are also discussed.   

Throughout Sections II and III, each key idea will be illustrated through a case study example.
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Section II   Parametric Methods
Parametric methods (as opposed to the non-parametric or empirical methods discusses in Section III) rely on a
mathematical description of the distribution of values generated by a process.  This section of the document describes
the three standard activities (selecting candidate distributions, estimation of parameters, and assessing goodness-of-
fit) used to describe the distribution and the adequacy of this description.   The general outline follows that developed
by Law and Kelton (1991).

Activity I  !!  Selecting Candidate Distributions

Activity I involves the use of prior knowledge and exploratory data analysis to make preliminary assessments of
which general families of distributions appear to best match the input data.  This evaluation is performed on the basis
of the shape, summary statistics, and simple distributional and graphical plots of the input data and does not, at this
stage, involve the estimation of the specific statistical parameter values associated with each of these families.    

Knowledge of the various properties and parameters associated with any of the various potential distributions can aid
in the selection of an appropriate distributional family.  Figure 1 provides a flow chart which may be used as a guide
to selecting potential distributions for further analysis based on prior knowledge of distribution characteristics.  It is
not intended to be all-inclusive, but does cover a range of distributions which might be commonly seen in the area of
exposure and health risk assessment.

Make Use of Prior Knowledge

The choice of input distribution should always be based on all relevant information (both qualitative and quantitative)
available for a parameter.  In selecting a distributional form, the risk assessor should consider the quality of the
information in the database and ask a series of broad questions which might  include the following:

Is there any mechanistic basis for choosing a distributional family?  Is the shape of the distribution likely
to be dictated by physical or biological properties or other mechanisms?  Ideally, the selection of candidate
probability distributions should be based on consideration of the underlying physical processes or 
mechanisms thought to be key in giving rise to the observed variability.  For example, assume that a
persistent systemic pesticide is present  in a lettuce plant and is not degraded or metabolized.  If, due to
weekly variations in sunlight, rainfall, and nutrient availability, the mass of each lettuce leaf increases each
week by some random independent proportion of the mass achieved during the previous week, the
distribution of residues in these lettuce plants will be lognormally distributed (Ott, 1995);  in this case, the
residue concentrations can be expressed as a random proportion of the quantity present in the immediately
prior state.  If each successive proportion is independent of the one before and  many weeks pass between the
initial and final states, the final residue concentration in the lettuce plant can be expressed as a product of
random variables which gives rise naturally to a lognormal distribution.  In general, if an exposure variable is
the result of the product of a large number of other random variables, it would make sense to select a
lognormal distribution for testing.  As another example, the exponential distribution would be a reasonable
candidate if the stochastic variable represents a process akin to inter-arrival times of events that occur at
independent constant rates.  

Is the variable discrete or continuous?   Can the variable only take on discrete values or is the variable
continuous over some range?  A discrete variable may only take one of several specific values, whereas a
continuous variable may take on an infinite number of values.  Examples of discrete variables would include
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whether the crop is treated or not (e.g., 0 or 1), the  number of times a given  pesticide is applied per season,
or the number of showers taken per week.   Examples of continuous variable include the residue concentration
of a given pesticide in a tomato, the amount of pesticide a.i. applied per acre in a season, or drinking water
consumption rate.    

Is the variable bounded or unbounded?  If bounded, what are the bounds of the variable?   What is the
physical or plausible range of the variable? Is it  semi-infinite (X>b)?  Does it take on only positive values
(X>0)?; Is it bounded by the interval [a,b]? A properly-fitted distribution should cover the range of values
over which the modeled variable could theoretically extend. If a fitted distribution extends beyond the range
of plausible values, then the model will produce implausible scenarios at the extreme tails of the distribution. 
Conversely, if a fitted distribution fails to adequately extend to cover real-world limits, the resulting model
will not reflect the true nature of the potential variability. 

Beta distributions are examples of bounded continuous distributions which might be considered for percent
foliar dislodgeable residue (%FDR) which could vary between 0% and 100%, for example.  Unbounded
continuous distributions include the normal distribution: these distributions can sometimes be truncated, if
necessary, to represent variables which have natural or practical physical limits (e.g., body weight).  Semi-
infinite continuous distributions (X>0) include the exponential distribution, the gamma distribution, the log-
normal distribution, and the Weibull distribution.  These distributions are all bounded on one-side (sometimes
by 0) and extend to infinity and may describe variables which are censored due to limits of detection  or some
aspect of the experimental design.  It is important to note that a correctly fitted distribution can extend
beyond the range of observed data. This is expected since data are rarely observed at the theoretical extremes
for the variable in question.

Are historical data available? Is it known that a variable of interest has been found to consistently have a
certain distribution type in other data collection and distribution fitting research?  Previous data may be
available for similar (or even identical) situations.  For example, environmental concentrations of a
contaminant have sometimes to be found to be lognormally distributed.  Time to complete certain tasks have
been shown to follow in some cases a Weibull distribution.  Human body weights have been modeled as a
normal or log-normal distribution (Burmaster and Crouch, 1997).  Consumption of water  have been shown
in some instances to be adequately represented by a log-normal distribution (see, e.g., EPA’s Exposure
Factors Handbook, the AIHC’s Exposure Factors Sourcebook), or Roseberry and Burmaster (1997). A
registrant should be aware of past modeling attempts to incorporate distributional information and may wish
to incorporate this into its own assessments. 

Does the sample represent a single population, or is the sample drawn from a mixture of subpopulations? 
Mixture models arise frequently in exposure and risk assessment.  Discrete mixture distributions occur when
the population of interest consists of a number of distinct subgroups, each with their own unique distribution. 
For example, different agricultural occupational groups may have different exposure distributions as a result
of differing activities; produce grown in different regions of the country may have systematic differences in 
pesticide residue concentrations due to systematic differences across the U.S. in rainfall and  rainfall patterns,
soil types and conditions, and length of the growing season . Multi-modality provides a first strong
suggestion that the observed sample is drawn from a mixture of distributions and is therefore not
homogenous. As a second step, statistical tests (e.g., the non-parametric Kruskal-Wallis test) are available for
assessing the homogeneity of different data sets (e.g., Florida residue data vs. California  residue data) and
determining whether the data sets can  indeed be merged into the single residue distribution.  Distinguishing
between these different subgroups can be important for both scientific evaluations of risk and evaluations of
different distributional issues.  When these differences are recognized and the subgroups identified, the
overall distribution can be built up from the individual distributions of the various subgroups.    
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Explore the Data
Exploring the data is an important step in the process of selecting plausible distributions.  Exploratory data analysis
can be thought of as consisting of two steps: (1) characterizing the data through the use of summary statistics and
(2) graphical data analysis. 

Summary Statistics.  Summary statistics are useful for initially characterizing or describing the data.  Common
summary statistics fall into three basic groupings: (1) measures of central tendency or location, such as the mean or
median;  (2) measures of dispersion or spread, such as the variance; and (3) measures of shape or skewness.
  

Measures of central tendency are intended to indicate the “center” of the data and commonly include the
mode, median, and mean.  Other measures of location include the geometric mean and trimmed mean (Helsel
and Hirsh, 1992).  

Measures of spread are intended to indicate how dispersed the data are relative to some central value or 
specify the distance between selected observations.  Common measures of spread include the range, inter-
percentile ranges (e.g., inter-quartile range), standard deviation, variance, and coefficient of variation.

Measures of shape are intended to provide insights to the symmetry or asymmetry in the distribution of the
data.  The most frequently used measures of shape are skewness (asymmetry) and kurtosis (degree of
peakedness).  In some cases, these summary statistics can be used to suggest one or more appropriate
distribution families for further testing as part of Activities II and III.  For symmetric continuous distributions
such as the normal, the mean and the median are equal.  Thus, if the mean and median for any given data set
are approximately equal, one might consider further analysis of the data to test the hypothesis that the
distribution is normal.  For exponential distributions, the coefficient of variation (defined as the standard
deviation divided by the arithmetic mean, and sometimes expressed as a percent) is equal to 1 (or 100%). 
Therefore, if the mean and standard deviation of any given data set are numerically similar, an exponential
distribution might be an appropriate distribution to hypothesize.  Skewness and kurtosis values, considered
together, can be used to assist in distribution selection  The skewness value is a measure of the symmetry of
the data, with perfectly symmetric distributions (like the normal) having a skewness value of zero. Right-
skewed distributions, like the right-skewed lognormal, have positive skewness values whereas left skewed
distributions have negative skewness values. Exponential distributions have a skewness value of 2. Thus, if a
set of data has a coefficient of variation of approximately 1 and a skewness of approximately  2, an
exponential distribution would be appropriate to consider. Many statistical and spreadsheet packages have
built-in features for automatically calculating many summary statistics.  Simply inspecting these output
values can aid substantially in determining
candidate distributions for further analysis. 



Figure  1. Selecting Continuous Theoretical  
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BOX 1:    Hypothetical Pesticide
Concentrations in Tomatoes (ppm)

110.5
147.5
111.6
139.0
72.9
109.8
94.8
68.8
142.3
70.8
74.6
169.7
143.7

204.3
148.3
66.9
53.6
68.5
108.0
97.6
78.2
68.2
80.3
267.7
170.0

BOX 2: Summary Statistics for Hypothetical
Pesticide Concentration in Tomatoes (ppm) 

      

 Box 1 lists data used as the case study throughout this section. 
The data in this Box  represent a set of 25 hypothetical residue
values in tomatoes.  Several summary statistics for these
residue data are shown in Box 2.  A quick visual  inspection of
the data can reveal a number of important insights.  Box 3 
illustrates some of these insights for  the sample tomato
pesticide data.

Graphical Data Analysis.  The risk assessor can often gain
important insights by using a number of simple graphical
techniques to explore the data prior to numerical analysis.  The
importance of this phase of visual inspection cannot be over-
emphasized.  A wide variety of graphical methods have been
developed to aid in this exploration including frequency
histograms, stem and leaf plots, dot plots, line plots for
discrete distributions, box and whisker plots, and scatter plots
[Tukey (1977);; du Toit et al. (1986); Morgan and Henrion,
(1990)].  These graphical methods are all intended to permit visual
inspection of the density function corresponding to the distribution of
the data.  They can assist the assessor in examining the data for
skewness, behavior in the tails, rounding biases, presence of multi-
modal behavior, and data outliers.  Graphical methods, however, can
be highly misleading in the face of considerable uncertainty due to
small sample size or a high coefficient of variation.  

A frequency histogram is a graphical estimate of the empirical
probability density function and can be compared to the fundamental
shapes associated with standard analytic distributions (e.g., normal,
lognormal, gamma, Weibull).  Law and Kelton (1991) and Evans et
al. (1993) have prepared a useful set of figures which plot many of
the standard analytic distributions for a range of parameter values. 
Frequency histograms can be plotted on both linear and logarithmic
scales and should be plotted to avoid too much jaggedness or too
much smoothing (i.e., too little or too much data aggregation).  If the
appearance of the histogram does not change much when varying the
bin width over a reasonably wide range, then the data analyst can feel
confident that any observed patterns are genuine.  If,  on the other
hand, the appearance changes in a fundamental way depending on the
selected bin width, any observed patterns at a specific bin width may
be an artifactual and should not be trusted.  As a starting point, some
authors suggest that it may be useful to select the number of bins
according to k = 1 + 3.322 log   n where n is the number of data10

points.

Line graphs apply to discrete random variables and are estimates of
the probability mass function. In a line graph, the proportion of values in the sample data set equal to a particular
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BOX 3: Distributional and Statistical Insights into
Hypothetical Tomato Pesticide Data Set

A number of important insights on the data and its
distributional form can be gained by inspecting the
summary statistics commonly provided by standard
statistical packages.  If the distribution is normal, for
example, the mean will be approximately equal to the
median. From the statistics provided in Box 2, we see that
the median of 108.0 is located within the 95% confidence
interval of the mean (i.e., 93.6  to 135.8).  We also see
that  the coefficient of variation of 0.446 (44.6%, as
indicated in the statistical output) is less than 1, indicating
that a normal distribution might be appropriate to
hypothesize.  Since  the mean of 114.7 and standard
deviation of 51.2 are not equal,  an exponential
distribution is unlikely to be appropriate.  The skewness
value of 1 (as opposed to 2) further supports the
elimination of the exponential distribution as a viable
candidate for further consideration.  

discrete value are plotted and compared, on the basis of shape, to the probability mass functions for discrete
distributions (e.g., binomial, geometric, Poisson, negative binomial, etc.). 
 
Box plots (Tukey box plots, box and whisker plots) can be a very
effective graphic display for summarizing the distribution of a
data set.  Box plots provide easily explained and easily
comprehended visual summaries of:

• the center of the data (median - the center line of the box)

• the spread in the data (inter-quartile range - the box
length)

• the skewness (quartile skew - the relative size of the box
halves)

• the range (whiskers - lines from the ends of the box to
the maximum and minimum of the data or to some other
selected endpoint, e.g., the 5th and 95th percentiles, etc.)

There are three basic versions of the box plot: (1) the simple box
plot, (2) the standard box plot, and (3) the truncated box plot.  
In the commonly-used standard box plot, the whiskers extend
only to the last data point within one step beyond either end of the
box.  A step is defined as 1.5 times the length of the box or approximately 1.5 times the inter-quartile range.  Data
points beyond 1.5 steps of either end of the box are plotted as individual points.  When constructed in this manner, the
box plot provides a rapid visual impression of the prominent features of the data. The  median (or central line within
the box) shows the location of the center  of the data. The spread of the  central 50% of the data are represented by the
length of the box.  And the length of the whiskers (relative to the box)  show how stretched the tails of the distribution
are.  Individual points which extend beyond the whiskers are outside values which may  be further investigated and
provide clues as to the distributional form. If the distribution is symmetric (e.g., as with a normal distribution), the
box will be divided into two equal halves by the median, the upper and low end whiskers will be the same length, and
the number of extreme data points will be distributed equally on either end of the plot   Two other kinds of box plots
(simple and truncated box plots) are more fully discussed by Helsel and Hirsh (1992).

 Because of  the variety of box plots available, the potential for confusion exists and all box plots submitted to HED
should be clearly labeled as to which values are being represented.

Formal Tests  for Normality and Lognormality

While examination of the summary statistics, frequency histograms, and  box-and-whisker plots associated with a
data set are useful exercises in exploratory data analysis, several procedures are available to formally test for
normality (or lognormality when log-transformed data are used) and can be used to confirm the assumption of
normality/lognormality.  Such  tests include Shapiro-Wilks test (for sample sizes #  50),  D'Agostino's test (for
sample sizes $ 50), and  Filliben’s statistic (sample size >50), which is an extension of the Shapiro-Wilk test.  The
Shapiro-Wilk and D'Agostino tests are the tests of choice when testing for normality (or lognormality) and are more
fully described in a number of standard texts.  While the Shapiro Wilk test is one of the most powerful tests for
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BOX 4: Frequency Distribution Histograms
for  Hypothetical Pesticide Data  

For a histogram of the pesticide residue data,
the initial number of number of bins is
estimated as k = 1 + 3.322 log  (25). 6  The10

figures below show histograms for the tomato
residue data for 3, 6, and 9 bins.  For these
data, 6 bins appear to strike a reasonable
balance between too much smoothing for the 3
bin histograms and too much jaggedness
apparent for the 9 bin  histogram.

normality, it is difficult to implement by hand as it involves calculating a correlation  between the quantiles of the
standard normal distribution and the ordered values of the data set.  It is, however, easily implemented as part of many
statistical software packages.  These tests (and many more)  are more fully discussed in the EPA publication Practical
Methods for Data Analysis (U.S. EPA, 1996).  This EPA publication is available on-line and can be downloaded in
PDF format (see References and Suggested Readings for http:// address)

It is important  to remember during this activity that it is less
critical for the analyst to be able to state with absolute certainty
that the data are distributed in the hypothesized manner (e.g.,
lognormally) than it is to determine that the hypothesized
distribution is “adequately representative” of the data.  The basic
question to be answered in the affirmative is whether the
empirical distribution of the data is sufficiently well-
approximated by the hypothesized distribution for the intended
purpose.  

Knowledge of the various properties and parameters associated
with any of the various potential distributions can aid in the
selection of an appropriate distributional family. A list of
selected theoretical distributions is included in Table 1 along
with a brief description of some of their potential uses.   As with
Figure 1, it is not intended to be all-inclusive, but does cover a
range of distributions which might be commonly seen in the area
of exposure and health risk assessment.
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BOX 5: Determination of the Appropriate Distributional Family for the Hypothetical Residue Data

Box 4 suggested that a normal distribution would be appropriate to hypothesize for the hypothetical pesticide data. 
However, the box and whiskers plot of the actual data reveals a decidedly right-skewed distribution; in addition the Shapiro-
Wilk statistic of 0.88 (p<0.0063) also suggests that a normal distribution is not appropriate.  As indicated before (and
confirmed by the shape of the histogram and box-and-whisker plot), an exponential distribution is also inappropriate for
further consideration.  Log-transformation of the hypothetical data produces a symmetric mound-shaped histogram and a
box-and-whisker plot showing characteristics of the normal distribution (eg., a box divided into two equal halves by the
median, whiskers of similar length, and an equal number of extreme data points on either end of the plot).  The summary
statistics further suggest that a lognormal distribution may be appropriate (mean . median and a skewness value
substantially closer to 0); the  Shapiro-Wilk test (W = 0.951 with p = 0.27) confirms this as an appropriate distribution for
further consideration and analysis as part of Activity II.   

Having determined that the log-normal distribution is the distribution most appropriate for further analysis, the two
subsequent activities are determining the most appropriate distribution (Activity II) and performing tests to verify that the
selected distribution and its parameters adequately fit the empirical data.   
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Table 1   Selected Theoretical Distributionsa

Distribution Type Distribution Description

Discrete 
Bernoulli The Bernoulli distribution is used to model random events when there are only two possible

outcomes (e.g., success or failure, treatment or no treatment) and is used to generate other

random variable can be thought of as the outcome of an experiment that either “fails” or

     binomial

    

    discrete uniform

       geometric

 

discrete random variables (e.g.,  binomial, geometric, and negative binomial).  A Bernoulli

“succeeds” and is fully characterized by its parameter p, representing the probability of an
event occurring. 

The binomial distribution models the number of successes in n independent Bernoulli trials,
with the with probability p of success in each trial.  It is produced by processes that (1) can
produce only one or the other or two outcomes and (2) are carried out a finite number of
trials.   It is fully characterized by the parameters n, p, and  x representing the number of
trials, the probability of success in each trial, and the number of successes, respectively.  

The discrete uniform distribution models random occurrences when there are several
possible outcomes, each outcome with the same probability of occurrence.  Typically used
as a “first” model for a quantity that is varying among integers, but about which little is
known.  

The geometric distribution models the number of failures before the first success in n
independent Bernoulli trials, each trial with an identical probability of success.  It is a direct
analogue of the exponential model except is limited to integers.    

.

Bounded Continuous 
beta The beta distribution is a very flexible distribution capable of exhibiting a wide variety of

shapes. It is often used to model bounded data, to model distributions for proportions or

triangular, log-triangular The triangular distribution is often used a rough model in the absence of data when the

near either extreme.  There is no mechanistic basis for this model which is typically used to

triangular distribution is sometimes used.   The minimum, maximum, and most likely value

uniform, log-uniform The uniform distribution is often used in the absence of data as a crude model when the

fractions, or to model time to complete some task. It can also be used as a rough model in
the absence of data (see Law and Kelton, 1991). Two parameters suffice to  describe this
distribution (" , " ) 1  2

values toward the middle of a range of possible values are more likely to occur than values

represent subjective uncertainties.   If the range covers several orders of magnitude, the log-

suffice to describe this distribution. 

quantity is known to randomly vary between known limits but where little else is known.  Its
use is appropriate when we are able to identify a range of possible values, but are unable to
determine which values within the range are more likely to occur than others.  The minimum
and maximum values suffice to describe this distribution.  If the limits cover several orders
of magnitude, the log-uniform is sometimes used.
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Unbounded Continuous
normal The normal distribution models phenomena that are the result of the sum of many other

random variables (by the Central Limit Theorem).  In other words, if a large number of
variables are added together (such that no one variable contributes a substantial amount to
total variation), the result will take the shape of a normal distribution.   These  frequently
involve small measurement  errors of various types and any process whose final outcome is
the result of many independently determined sums. The mean and standard deviation suffice
to describe this distribution.  The skewness of the normal distribution is 0 (it is symmetric)
and the kurtosis is 3.  

As negative quantities can be generated with the normal distribution, this is in some cases
theoretically inappropriate.  However, as long as the coefficient of variation of less than ca.
0.2, generation of negative values is sufficiently improbable  so as not to be of concern since
the probability of generation of values more than five standard deviations from the mean is 
quite small.    
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Non-negative Continuous      
     exponential

    

 

      gamma

    lognormal

     

     Weibull

 When events are purely random, the times between successive events are described by an
exponential distribution.  The exponential distribution  is frequently used to describes the
time between events for Poisson processes (i.e., processes for which the probability of an
event per unit time interval is constant and independent of the number and timing of   events
which occurred in the past)  or the fraction of individuals (or anything else) remaining in a
system at various times after the start of an exponential decline. The mode of exponential
distribution is zero and the probability of occurrence continually decreases with increased
values.  The skewness of an exponential distribution is two. This  distribution  complements
the Poisson distribution which characterizes the number of occurrences per unit time and is
a special case of the gamma and Weibull distributions.   The exponential is less tail-heavy
than the lognormal and extreme values therefore have a lower probability.  It is
characterized by a single parameter ($), representing the mean time between events.
  
The gamma distribution includes  is widely used in environmental analysis to characterize
pollutant concentrations as well as used in meteorological processes to characterize
precipitation. It is also commonly used to represent the time to complete some task.  The tail
of the gamma distribution is not as tail-heavy (long) as the lognormal and it therefore
ascribes a lower probability to extreme values than does the lognormal distribution .  The
gamma is typically describe by two parameters, a shape parameter and a scale parameter.  
When the shape parameter is 1, the distribution is equivalent to the exponential distribution.

The lognormal distribution models quantities that are the product of a large number of other
quantities (i.e., if one were to multiply  a large number of random variables together, the
result will tend toward a lognormal distribution).  This distribution results when the
logarithm of a random variable is described by a normal distribution .  It is widely used in
environmental analysis to represent positively valued data exhibiting positive skewness. 
Examples include concentrations of chemicals in environmental media and amounts of those
media which are consumed, efficiencies of absorption, and rates of elimination of toxicants. 
The lognormal distribution has a heavier (longer) tail than the exponential, gamma or
Weibull distributions.   There are three common ways to parameterize a lognormal
distribution: (1) arithmetic mean and standard deviation of the log-transformed variables;
(2) geometric mean and standard deviation of the non-transformed variables; and (3)
arithmetic mean and standard deviation of the non-transformed variables. 

The Weibull distribution is widely used in life data analysis, time to complete some task,
and time to equipment failure. The Weibull distribution is less tail heavy than the lognormal
and thus ascribes a lower probability to extreme events.  It is typically described by two
parameters, a scale parameter and a shape parameter.  As with the gamma distribution, the
distribution is equivalent to the exponential distribution  when the shape parameter is 1,

The above information was obtained mainly  from  Hattis and Burmaster (1994), Vose (1996),  Law and Kelton (1995), and Morgan and Henrion
(1990)

Note: Distributional plots, probability and cumulative density functions, interpretation of distributional parameters,  formulae for important statisticala

terms (e.g., mean, standard deviation, etc.)  are available from the literature (e.g., see Law and Kelton (1995), Vose (1996) and Evans et al. (1993))



 Specialized statistical software is available to create normal probability plots.  Alternatively, one1

can create these plots using certain spreadsheet software.  For example, to create a normal probability plot
using Excel or Quattro Pro, first rank the observations (r , r , r , ... r ) in ascending order (from lowest to1  2  3   n

highest) and assign each observation a rank (e.g, lowest observation receives a rank of 1, the next receives a
rank of two, all the way to the Nth observation which receives a rank of N).  For each observation, the
cumulative rank is then calculated using a plotting position formula (e.g., the Weibull plotting position
formula r  /n+1).   This can be considered similar to a  percentile value except percentile values range toI

100%.  Next, the normal quantile is calculated for each cumulative rank:  the normal quantile is the z-score
associated with each percentile and can be determined using Excel's NORMSINV function.  Finally, each
observation’s normal quantile (or z-score) is plotted on the x-axis against each observation on the y-axis.    
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Activity II  !! Estimation of Parameters

Once a candidate distribution family is selected (e.g., a lognormal distribution), we estimate the parameters of the
candidate family in order to have a completely specified distribution for use in the simulation. Parameter estimation is
generally accomplished using conventional statistical methods, the most popular of which include the method of
maximum likelihood, probability plotting methods, and the method of moments.  See   Law and Kelton (1991), Evans
et al. (1993), Gilbert (1987), and Vose (1996).

Parameter Estimation Methods

Maximum Likelihood Method.  Probably the most often-used method for estimating the parameters of a distribution
is the method of maximum likelihood.  For some distribution families (e.g., normal, exponential, geometric), 
maximum likelihood estimators  (MLEs)  are well-defined values resulting from a straightforward algebraic
calculation, but for others solving the equations is computationally intensive and special software is required.  

There are a number of references which derive the MLE for several common distributions (e.g, Vose (1996), Ott
(1995) Evans et. al. (1993)).  For the purposes of this document we will simply state that the MLE for the mean and
standard deviation of a normally distributed population are simply the mean and standard deviation, respectively, of
the observed sample data.  For the exponential distribution, the MLE for the single parameter of the exponential
distribution is the mean of the observed sample data.  For the geometric distribution, the MLE for the p parameter is
1/(00 +1).

Probability Plotting Methods.  Probability plotting methods, sometimes called linear least square regression
methods  or regression on order statistics, are based on finding probability and data scales so that the theoretical
cumulative distribution function plots as a straight line.  The transformed data is then plotted against the linearized
CDF and ordinary linear regression is performed to estimate the parameters of the fitted distribution. This method is
applicable to theoretical distributions whose CDFs are expressible as a function of one or two parameters, for
example, the exponential, normal, lognormal, and Weibull distributions. The following are instructions for linearizing
the CDF and estimating the parameters of the fitted distribution:  

For a distribution which has been hypothesized to be normal
Construct a normal probability plot with z(p) on the abscissa (the “x” axis)  vs. each x  value on the ordinaten

(the “y” axis) .  If the normal probability plot is a straight or near-straight line, this is evidence that the1

distribution is normal and the data are well-modeled by a normal curve.  Using ordinary least-squares
regression, calculate the slope of the fitted line and its intercept.  The intercept is an estimate of the arithmetic
mean of the distribution while the slope  is an estimate of the arithmetic standard deviation of the distribution.
These values should be compared with (and comparable  to) the values calculated using ML method
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described above.  The uncertainty in these parameter estimates can be roughly gauged by the statistical
confidence interval about the intercept and slope as determined by the linear regression statistics.

For a distribution which has been hypothesized to be lognormal
Calculate the natural logarithms of each of the x  values for n = 1 to N.  Construct a normal probability plotn

with z(p) on the abscissa (the “x” axis) vs. each ln [x ] value on the ordinate (the “y” axis) as described inn

the previous footnote (except than ln [x ] is substituted for [x ]).  If the lognormal probability plot is an      n
straight or near-straight line, this is evidence that the distribution is lognormally distributed and the data are
well-modeled by a lognormal distribution.  Using ordinary least-squares regression, calculate the slope of the
fitted line and its intercept.  The slope is an estimate of the mean of the natural logarithms of the distribution
(µN) while the intercept is an estimate of the standard deviation of the logarithms (FN). These values should
approximate the values for the mean and standard deviation, respectively, calculated by the following
formulae:

To calculate the arithmetic mean and standard deviations from these regression values (i.e., to define the
distribution in its original terms), the following formulae are used: 

For a distribution which has been hypothesized to be exponential
First, calculate the cumulative frequency by ranking the observations from lowest to highest as described in
the previous footnote.  Then, for each ranked observation subtract this quantity from 1 and take the natural
logarithm of this difference. Plot this value on the y-axis vs. each individual data point on the x-axis.  If the
plot is reasonably straight, this is evidence that the distribution is exponentially distributed.  Using ordinary
least-squares regression, calculate the slope of the fitted line fixing the y-intercept of the regression line at the
point (0, 1).  The calculated slope of this line is the $ parameter appearing in the exponential model [f(x) = 1
- e ] and should be compared with (and comparable to) the value calculated from the ML method for-x/$

exponential distributions described above.  As before, the uncertainty in this parameter estimate can be
roughly gauged by the confidence interval about the slope as determined from the linear regression statistics.  
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For a distribution which has been hypothesized to be Weibull

   The two characteristic parameters of a Weibull distribution (i.e., the scale and shape parameters) can most
easily be determined by either using dedicated statistical distribution fitting software or by plotting the data
on specialized commercially-available Weibull probability paper  (e.g., see Craver (1996)) .  In the latter
case, the Weibull scale and shape parameters can be read directly from the probability plot.  For a Weibull
curve (with a location parameter of 0), the scale parameter is typically represented by the 63.2 %-ile.  

Weibull plots can also provide information about other potential distribution families.  For example, the slope
of the plotted points provide additional information about the distribution family or class with slopes of 1, 3,
and 5 evidence of exponential, lognormal, and normal distributions, respectively.  

For a distribution which has been hypothesized to be Beta

   As with the Weibull distribution, characteristic parameters of a beta distribution can most easily be
determined by either using dedicated statistical distribution fitting software or by plotting the data on
specialized commercially-available beta probability paper. 

For a distribution which has been hypothesized to be Gamma

   As with the Weibull and beta distributions, gamma parameters can most easily be estimated by using
commercially-available software or gamma probability paper.  

An example of these methods using the hypothetical pesticide data in shown in Box 6. 

Method of Matching Moments.  

The method of moments replaces each uncertain variable by its mean and variance and uses probability laws to
estimate the mean and variance of the models outcome.  However, the method of moments has some fairly severe
limitations.  For example ( Vose, 1996), 

C it assumes that all variables in the model are independent

C it assumes that the outcome is approximately normally distributed

C it assumes either that all variables in the model are approximately normally distributed or that the model has a
very large number of uncertain variables, none of which dominates the outcome; and

 C it cannot easily cope with divisions, exponents, power functions, discrete variables, etc. 
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BOX 6: Determination of the Appropriate Parameters for the Hypothesized Lognormal Distribution
of the  Pesticide Data

Having determined that a log-normal distribution is the most appropriate distribution for further analysis of
the hypothetical tomato residue data, the analyst should next determine the appropriate parameters which
define the distribution (i.e., the mean and standard deviation).  A normal probability plot of the log-
transformed values  reveals a straight line with a slope of 0.4447 and an intercept of 4.65789.  This intercept
is an estimate of the mean of the log-transformed values (i.e., it is the F') and the slope is an estimate of the
standard deviation of the log-transformed values (it is the F') 

These values are comparable to the mean and standard deviation calculated as follows:

Calculating the arithmetic mean and standard deviation from the regression values in order to define the
distribution in its original terms:

Thus, the most appropriate distribution to hypothesize for the hypothetical tomato pesticide residue data is a
lognormal distribution with these parameters.  
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Activity III !!  Assessing Goodness of Fit 

Activity III involves determining how well our selected (and now fully-defined) candidate distribution is in
representing the true underlying distribution for our data. Having estimated the parameters of the candidate
distributions, it is necessary to evaluate the "quality of the fit" and, if more than one candidate distribution was
selected, to select the "best" distribution from among the candidates. A goodness of fit test (GoF test) is a statistical
test in which the null hypothesis (H ) is that the observed data are characteristic of a random variable with theo

hypothesized distribution function (e.g, exponential with a $ parameter of 0.8). Unfortunately, there is no single,
unambiguous measure of what constitutes best fit.  Ultimately, the risk assessor must judge whether or not the fit is
acceptable. This judgement should be based on a consideration of goodness-of-fit statistics as well as graphical
comparisons of the fitted and empirical distributions, paying special attention to issues relevant to the analysis, e..g,
fit in the lower or upper tails (but note that this is where the confidence intervals are widest).  It is also important to
consider the processes that generated the data and to look for probabilistic distribution models that arise from similar
processes.   Used in conjunction with the probability plots and statistical measures used in Activity I, GoF tests can,
however, be powerful tools for verifying that a chosen distribution is at least reasonable.  

Goodness-of-Fit Tests

Goodness-of-fit tests are formal statistical tests of the hypothesis that the set of sampled observations are an
independent sample from the known or assumed distribution.  The null hypothesis, H ,  is that the randomly sampledo

set of observations are independent, identically distributed random samples from a population with the hypothesized
distribution. The GoF tests indicate whether the hypothesized distribution can be reasonably rejected as improbable. 
It is important to recognize that failure to reject H  is not the same as accepting H  as true  These tests, taken alone,o        o
are not very powerful for small to moderate sample sizes (i.e., subtle but systematic disagreements between the data
and the hypothesized distribution may not be detected); conversely, the tests can be too sensitive for large  numbers of
data points -- that is, for data sets with a large number of points, H  will almost always be rejected.o

Commonly used goodness-of-fit tests include the chi-square test, Kolmogorov-Smirnov test, and Anderson-Darling
test.  These are described further below.   

Chi-Square Test.  The chi-square test is based on the normalized difference between the square of the observed and
expected frequencies and can be viewed as a comparison of the frequency histogram with the fitted probability density
function or probability mass function.  The chi-square test statistic is computed by dividing the entire range of the
fitted distribution into k contiguous, non-overlapping intervals and counting the number of data samples falling into
each interval (N ).  This count is compared to the expected number of observations in a bin.  Given a sample size of n,j

i.e., expected number of data points in the jth bin (j = 1 to k) is np    where p  = F(x ) ! F(x ) .The chi-square testj   j  j   j!1

statistic is computed as

The chi-square test is highly dependent on the width and number of intervals chosen.  Law and Kelton recommend
selecting equi-probable bin widths such that  np  $ 5; D’Agostino and Stephens (1986) recommend selecting k equi-j

probable intervals where k = 2n  For example, if one had 100 data points, one might wish to form k = 132/5

(equiprobability) intervals.  If 13 equiprobability intervals are formed for the 100 data points, then the expected
number of points in each interval (i.e., the np )  would be calculated as follows:  j



n × 1
k

' 100 × 1
13

' 8

 While these inverses can be calculated algebraically for functions with closed forms such as the2

exponential, use of a spreadsheet program or numerical methods may be necessary for continuous functions
such as the normal, lognormal, gamma, and beta distributions.  Excel  and QuatroPro have built-in inverse©  ©   

functions which are called NORMSINV, LOGINV, GAMMAINV, and BETAINV, respectively, which
return the value associated with any given probability.  In our hypothetical pesticide example (see Box 7), the
given probability is equal to 1/j for  j = k down to 1, with k = 5 (i.e., 1/j = 0.2 for the first bin width, 0.4 for
the second bin width, 0.6 for the third width, 0.8 for the fourth, and 1.0 for the last).
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This satisifies the criteria that each bin size be chosen such that an equal number of points (in this case, 8) numbering
at least five be expected in each bin.  The size of each bin width is calculated by inverting the cumulative distribution
function .  This is best illustrated by returning to our pesticide example as shown in Box 7. 2

Kolmogorov-Smirnov Test.  The Kolmogorov-Smirnov Test is a non-parametric test based on the maximum
absolute difference between the theoretical and sample (or step-wise empirical) Cumulative Distribution Functions
(CDFs). Large values of this statistic indicate a poor fit while small values indicate a good fit.  Critical values for the
K-S statistic depend on whether or not the parameters of the distribution are known a priori or have to be estimated
from the data.  See Law and Kelton (1992) and D’Agostino and Stephens (1986).  

The Kolmogorov-Smirnov test is most sensitive around the median and less sensitive in the tails and is best at
detecting shifts in the empirical CDF relative to the known CDF.  It is less proficient at detecting spread but is
considered to be more powerful than the chi-square test.  

Anderson-Darling Test.  The Anderson-Darling test is designed to test goodness-of-fit in the tails of a probability
density function based on a weighted-average of the squared difference between the observed and expected cumulative
densities.  Additional information and critical values for Anderson-Darling statistic  for the all parameters known
case, and for the normal , exponential, and Weibull distributions are given by Law and Kelton (1992)and D’Agostino
and Stephens (1986).  Because of its relative emphasis on fit in the tails, the Anderson-Darling statistic may be
particularly useful to assessors as a goodness-of-fit statistic.
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BOX 7: Equiprobability Chi-Square Test of Sample Pesticide Data 

For our pesticide example, we have  a total of 25 data points and desire to select k equi-probable intervals.  We
select  k a value of 5: although the formula would yield for k a value of 7  (k = 2(25 )=7), we require a minimum 2/5

of 5 data points per bin and thus for 25 points, 5 bins (or equiprobability intervals)  are necessary.  If 5
equiprobability intervals are formed for the 25 data points, then the expected number of points in each interval
(i.e., the np )  is 5 (or n x 1/k = 25 x (1/5)).  With 5 bins (or intervals), the given probability is equal to 1/j for j =j

k down to 1 with k = 5.  That is, 1/j = 0.2 for the first bin width, 0.4 for the second bin width, 0.6 for the third bin
width, 0.8 for the fourth, and 1.0 for the last.  The individual bin widths are calculated using Excel’s LOGINV
function with the assumed mean and standard deviation calculated in Activity II.   The individual bin widths,
observed number of points in each bin, the expected number of points in each bin, and the calculated Chi-square
values are shown below:  

.Calculation of Chi-Square Value for Pesticide Example Using a Lognormal (116.3, 
55.2) Hypothesized Distribution 

J Intervala No.
Observed

No. Expectedb Chi-Squarec

Lo Hi

1 0 72.46 6 5 0.2

2 72.46 94.14 4 5 0.2

3 94.14 117.94 6 5 0.2

4 117.94 153.2 5 5 0

5 153.2. 4 4 5 0.2

TOTAL 25 25 0.8

  Intervals are calculated by evaluating the inverse of the hypothesized distribution ata

each j value.  In this example, the hypothesized distribution is lognormal with an
arithmetic mean of 116.3 and an arithmetic  standard deviation of 55.2.  Since this
distribution has no closed form, the upper end of each of the 5 intervals must be
evaluated with Excel (or QuatroPro) using the LOGNORMINV function with a mean
(of the logs) of 4.657489 and a standard deviation (of the logs) of 0.444947 (each of
which were calculated previously in Box 6).
  The number expected in each bin was calculated previously as  n x 1/k   b

  Each chi-square value is calculated as (observed-expected)  / expected.  The finalc 2

chi-square value is calculated as the sum of these individual chi-squared values

The degrees of freedom is given by < = k ! m !1 where k is the number of bins (or classes) and  m is the number
of parameters we are estimating from the data  (i.e., the mean and standard deviation).  From this, < = 5!2!1 = 2. 
The P  critical value for p = 0.1 and 2 degrees of freedom is calculated as  P   (0.9;2) = 4.6.  Since our observed 2                  2

P  value of 0.8<4.6, , we are unable to  reject the lognormal  model with an arithmetic  mean of 116.3  and an 2

arithmetic  standard deviation  of 55.2 on the basis of  this chi-squared test of fit: the Chi-square value  suggests
that there is no reason to conclude that our data are poorly fitted by our hypothesized lognormal  distribution. 

Cautions Regarding Goodness-of-Fit Tests
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Care must be taken not to over-interpret or over-rely on the findings of goodness-of-fit tests.  It is far too tempting to
use the power and speed of computers to run goodness-of-fit tests against a generous list of candidate distributions,
pick the distribution with the "best" goodness-of-fit statistic, and claim that the distribution that fit "best" was not
rejected at some specific level of significance.  This practice is statistically incorrect and should be avoided [Bratley et
al., 1987, page 134]. As indicated previously,  Goodness-of-fit tests have notoriously low power and are generally
best for rejecting poor distribution fits rather than for identifying good fits.  For small to medium sample sizes,
goodness-of-fit tests are not very sensitive to small (but potentially significant) differences between the observed and
fitted distributions.  On the other hand, for large data sets, even minute differences between the observed and fitted
distributions may lead to rejection of the null hypothesis.  For small to medium sample sizes, goodness-of-fit tests
should best be viewed as a systematic approach to detecting gross differences.  

We note that there is absolutely no substitution for careful visual inspection of both the data and the theoretical
distribution of the fit to the data.  The human eye and brain are able to interpret and understand data anomalies far
beyond the ability of any computer program or GoF tests.  GOF tests may, at best, simply serve to confirm what the
analyst has found though visual inspection.  One may quite appropriately decide to retain a particular  probability
model despite having rejected it on the basis of GoF tests if it appears to be a good fit to the data as judged by the
visual inspection of the probability plots and other comparisons.  

Graphical (Heuristic) Methods for Assessing Fit

Graphical methods provide visual comparisons between the experimental data and the fitted distribution.  Despite the
fact that they are non-quantitative, graphical methods often can be most persuasive in supporting the selection of a
particular distribution or in rejecting the fit of a distribution if one has a sufficiently large sample size.    This
persuasive power derives from the inherent weaknesses in numerical goodness-of-fit tests.  Commonly used graphical
methods for assessing goodness of fit include: 

Frequency comparisons  compare a histogram of the experimental data with the density function of the fitted
data.  Frequency comparisons must be interpreted with care since the visual comparison will depend on the
number of bins used to generate the histogram of the data.  Two examples of a frequency comparison are shown
below for our sample pesticide data. The leftmost illustration compares the untransformed pesticide data to the
normal curve while the illustration to the right compares the log-normalized pesticide residue data to the normal
curve 



  The theoretical Q-Q plot for the normal (and log-transformed lognormal) distributions are3

essentially equivalent (except for scaling) to the normal probability plot discussed earlier and constructing Q-
Q plots for the normal and lognormal distributions would therefore be of little additional value.
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Box plot comparisons compare a box plot of the observed data with a box plot of the fitted distribution.  This is
illustrated below for the sample pesticide residue data (observed) and the lognormal distribution (fitted).

Observed data

       
                             

Fitted Distribution

Probability-Probability plots (P-P plots) compare the observed cumulative density function (i.e., the sample
probability) with the fitted cumulative density function (i.e., the model probability).  P-P plots are used to graphically
evaluate how well the data fit a given (hypothesized) theoretical distribution,  e.g. normal, lognormal, Weibull, etc.  
P-P plots tend to emphasize differences in the middle of the predicted and observed cumulative distributions, and are
less sensitive than Q-Q plots to differences in the tails (where risk assessors are more frequently interested).

Theoretical Quantile-quantile plots (Q-Q plots) graph the quantiles of the specific fitted (or theorized) distribution
against the quantiles of the actual data.  To construct a theoretical Q-Q plot, one sorts the data in ascending order and
calculates a cumulative frequency  (as done for the normal probability plot) using the standard plotting formula (i.e., r
/N + 1). At this point, the z value associated with this probability (or cumulative frequency) value is calculated andI 

transformed to its original scale.  In other words  the quantile value associated with this cumulative probability from
the theoretical distribution is calculated.  This can be done with Excel or QuantroPro using their inverse cumulative
probability functions (e.g., NORMINV,  LOGINV, or GAMMAINV) or can sometimes be done analytically using an
algebraic formula for distributions for which there is a closed form for the cumulative probability function (e.g., the
exponential and Weibull distributions).   Finally, the actual data values are plotted against the values which would3

have been seen if the data were distributed according to the hypothesized distribution.  

The theoretical Q-Q plot is used to determine how well the data set is modeled by the theorized distribution: any
systematic deviations in the distribution of our sample data from the hypothesized distribution are highlighted and
(ideally at least) will be readily apparent..  If the graph is linear (and there are no significant systematic deviations
from linearity), this is evidence in support of  the data fitting the specific hypothesized distribution. Q-Q plots tend to
emphasize differences in the tails of the fitted and observed cumulative distributions.  The deviation of a Q-Q plot
from a straight line can provide diagnostic information about the theorized distribution. For example, if the data in the
upper tail fall above the quartile line and those in the lower tail fall below it, there are too few data in the tails than
would be expected in the theoretical distribution (and the theorized distribution is said to be too heavy in the tails). 
Conversely, if the data in the upper tail fall below the quartile line and those in the lower tail fall above it, then there
are more data points in the tails than would be expected in the theorized distribution (and the theorized distribution is
said to be too light in the tails).  Patterns in deviations from linearity can be investigated by use of a residuals plot to
detect systematic departures.  
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The choice of whether or not to use an EDF in an
assessment employing Monte Carlo methods is
ultimately up to the risk  and his/her level of comfort
and confidence with the data and the method.  It must 
be remembered that  EDFs (when used in the usual
manner) rely solely on past observations and therefore
preclude generation of data outside the historically-
observed range.  Monte-Carlo results generated from
an EDF may produce tails that are too short and can
therefore underestimate the probability of extreme
events.      

Section III Non-Parametric Distribution Functions
Many times in Monte Carlo analyses, a non-parametric function (or  empirical distribution function (EDF)) is used to
characterize a model variable.  In these situations, the risk assessor has determined that the data itself provides the
best representation of the exposure variable.  Simply put, the risk assessor has chosen to directly use the sample
values to define the distribution of the exposure variable rather than represent it by a theoretical distribution fit to the
data. 

D’Agostino and Stephens (p.8-9,1986) discuss the advantages of EDFs.  Some of the benefits of likely interest to risk
assessors include: 

1. EDFs  provide complete representation of the data without any loss of information.

2. EDFs do not depend on any assumptions associated with parametric models. 

3. For large samples, EDFs converge to the true distribution for all values of x.

4. EDFs provide direct information on the shape of the underlying distribution, e.g., skewness and
bimodality; EDFs supply robust information on location and dispersion.

5. An EDF can be an effective indicator of peculiarities (e.g., outliers)

6. An EDF does not involve grouping difficulties and loss of information associated with the use of
histograms

7. Confidence intervals are easily calculated.

8. EDFs can be effectively used for censored samples.

D’Agostino and Stephens also point out one of the potentially serous drawbacks to EDFs:  EDFs can be sensitive to
random occurrences in the data and sole reliance on them can lead to spurious conclusions.  This can be
especially true if the sample size small.  In addition, we note that empirical distributions (as traditionally used) do not
permit data to be generated which are outside the range of historically observed data and EDFs therefore tend to
underestimate the probability of an extreme event.  



prob (X # x () ' F(x () '
number of x )s # x (

N
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Below, we discuss how  an EDF is defined and present several approaches used to implement EDFs. 

Discrete Representation of EDFs
 Given a random sample of n observations, X , X , ···, X ,, a discrete representation of this EDF would be1  2   n

represented as X = {X , X , ···, X ,}.  These values could be used themselves directly in the simulation in what is1  2   n

termed a “trace-driven” simulation.  In this technique, values from the raw input data are repeatedly selected in a
random manner  and used to calculated model outputs.  For example, given the data set X =
{1,1,3,4,7,9,12,12,16,17}, a discrete representation of this data set is illustrated below:  

    

We note that with this representation no intermediate values (e.g., 2, 5, 6, 8, etc) can be generated and the simulation
is limited to only those values which have historically been observed and are present in the data input set.  

Continuous Representation of EDFs
Given a random sample of n observations, X , X , ···, X , sorted from smallest to largest, from a true but unknown1  2   n

distribution, an empirical distribution function, EDF, expressed on a cumulative basis may be defined as

For example, given the same data set X = {1,1,3,4,7,9,12,12,16,17}, the probability that X # 11 is given by F(11) =
6/10 = 0.60 since there are 6 samples with values less than or equal to 11 and there are ten samples in the entire data
set.  This formulation of the EDF presents some problems since all values of x  in the range 9 < x  # 11 have the same*      *

probability (called constant interpolation), i.e., prob (X # 10) = 6/10,  prob (X # 10.5) = 6/10,  prob (X # 11.5) =
6/10, and  so on.  Defined this way, the EDF is a step function with abrupt jumps at the sample values as illustrated
below:
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The EDF is then expressed as  

where x[0] is set to zero. As with the discrete representation, values below the sample minimum and beyond the
sample maximum cannot be generated.  However, unlike the discrete representation, any value between the maximum
and minimum can be generated.  

Linear Interpolation of Continuous EDFs.   It may be unsettling to define the EDF as a step function with
abrupt jumps at certain values and so interpolation  is often used to estimate the probabilities of  values in between
sample values.  Generally , for values between observations, i.e., X  # x < X , linear interpolation is used, althoughk!1    k

higher order interpolation is sometimes used.  The EDF for linear interpolation between sample values is simply
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Extended EDF.   The linearly interpolated EDF cannot produce values beyond the values in the data sample. 
This may be an unreasonable restriction in many cases.  For example, the probability that a previously observed
largest value in a sample based on n observations will be exceeded in a sample of  N future observations may be
estimated using the relationship prob = 1 ! n/(N + n).  If the next sample size is the same as the original sample size,
there is a 50% likelihood that the new sample will have a largest value greater than the original sample’s largest value. 
Restricting the EDF to the smallest and largest sample values may produce distributional tails that are too short.  

In order to get around this problem, one may extend the EDF to include plausible minimum and maximum values. 
The extended EDF expands the linearly interpolated EDF by including a user-defined absolute minimum, x , andmin

absolute maximum, x , which are beyond the data sample.  max

where x[0] = x  and x[n+1] = x .min    max
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